Dimeric vs bidimeric cells for molecular quantum cellular automata composed of oxidized norbornadiene and its polycyclic derivatives

Author:

Palii Andrew1ORCID,Belonovich Valeria12ORCID,Aldoshin Sergey1ORCID,Tsukerblat Boris3ORCID

Affiliation:

1. Federal Research Center of Problems of Chemical Physics and Medicine Chemistry 1 , Chernogolovka, Moscow Region 142432, Russian Federation

2. Moscow Institute of Physics and Technology 2 , Dolgoprudny, Moscow Region 141701, Russian Federation

3. Ben-Gurion University of the Negev 3 , 84105 Beer-Sheva, Israel

Abstract

Quantum Dot Cellular Automata (QCA) is an emerging trend in the field of nanoelectronics, and computing can be regarded as an alternative to the traditional complementary metal–oxide–semiconductor technology. The paper is devoted to the study of the key functional properties of the cells for molecular QCA based on mixed valence molecules. The theoretical results for the heat dissipation under the conditions of the fast nonadiabatic switching event and cell–cell response function are obtained in the framework of the quantum-mechanical vibronic approach. These results are parameterized using the previous reliable ab initio calculations performed for oxidized norbornadiene and its polycyclic derivatives with variable lengths of the bridge. The comparative analysis of the dimeric and bidimeric molecular cells composed of these compounds is given. It is underlined that the conditions of a strong non-linear response and a low heat release are contradictory. However, despite this problem, a parametric regime is proposed, which provides a low heat release in combination with a strong nonlinear response of the working cell to the electric field induced by the polarized driver cell.

Funder

Russian Science Foundation

Ministry of Science and High Education of the RF

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3