Optimization of Shapes and Sizes of Moth-Eye-Inspired Structures for the Enhancement of Their Antireflective Properties

Author:

Choi Ji Seong,An Joon Hyung,Lee Jong-Kwon,Lee Ji YunORCID,Kang Seong MinORCID

Abstract

Novel antireflective (AR) structures have attracted tremendous attention and been used in various applications such as solar cells, displays, wearable devices, and others. They have also stimulated the development of several other methods, including moth-eye-inspired technologies. However, the analyses of the shapes and sizes of nanostructures remain a critical issue and need to be considered in the design of effective AR surfaces. Herein, moth-eye and inverse-moth-eye patterned polyurethane-acrylate (PUA) structures (MPS and IMPS) with three different sizes are analyzed and compared to optimize the designed nanostructures to achieve the best optical properties pertaining to maximum transmittance and minimum reflectance. We fabricated moth-eye-inspired conical structures with three different sizes using a simple and robust fabrication method. Furthermore, the fabricated surfaces of the MPS and IMPS structures were analyzed based on the experimental and theoretical variation influences of their optical properties according to their sizes and shapes. As a result of these analyses, we herein propose a standard methodology based on the optimal structure of IMPS structure with a 300 nm diameter.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3