Starch-Capped Silver Nanoparticles Impregnated into Propylamine-Substituted PVA Films with Improved Antibacterial and Mechanical Properties for Wound-Bandage Applications

Author:

Iqbal MudassirORCID,Zafar Hadia,Mahmood AzharORCID,Niazi Muhammad Bilal KhanORCID,Aslam Muhammad Waqar

Abstract

This research endeavor aims to develop polyvinyl alcohol (PVA) based films capable of blends with silver nanoparticles (Ag–NPs) for improved antibacterial properties and good mechanical strength to widen its scope in the field of wound dressing and bandages. This study reports synthesis of propylamine-substituted PVA (PA–PVA), Ag–NPs via chemical and green methods (starch capping) and their blended films in various proportions. Employment of starch-capped Ag–NPs as nanofillers into PVA films has substantially improved the above-mentioned properties in the ensuing nanocomposites. Synthesis of PA–PVA, starch-capped Ag–NPs and blended films were well corroborated with UV/Vis spectroscopy, FTIR, NMR, XRD and SEM analysis. Synthesized Ag–NPs were of particle shape and have an average size 20 nm and 40 nm via green and chemical synthesis, respectively. The successful blending of Ag–NPs was yielded up to five weight per weight into PA–PVA film as beyond this self-agglomeration of Ag–NPs was observed. Antibacterial assay has shown good antimicrobial activities by five weight per weight Ag–NPs(G)-encapsulated into PA–PVA blended film, i.e., 13 mm zone inhibition against Escherichia coli and 11 mm zone inhibition against Staphylococcus aureus. Physical strength was measured in the terms of young’s modulus via tensile stress–strain curves of blended films. The five weight per weight Ag–NPs(G)/PA–PVA blend film showed maximum tensile strength 168.2 MPa while three weight per weight Ag–NPs(G)/PVA blend film showed highest values for ultimate strain 297.0%. Ag–NPs embedment into PA–PVA was resulted in strong and ductile film blend than pristine PA–PVA film due to an increase in hydrogen bonding. These good results of five weight per weight Ag–NPs(G)/PA–PVA product make it a potent candidate for wound dressing application in physically active body areas.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3