Polyacrylamide-Metilcellulose Hydrogels Containing Aloe barbadensis Extract as Dressing for Treatment of Chronic Cutaneous Skin Lesions

Author:

Alesa Gyles Desireé,Pereira Júnior Anivaldo DuarteORCID,Diniz Castro Lorena,Santa Brigida Andressa,Nobre Lamarão Maria Louze,Ramos Barbosa Wagner LuizORCID,Carréra Silva Júnior José OtávioORCID,Ribeiro-Costa Roseane MariaORCID

Abstract

Chronic wounds are severe breaks in the skin barrier that fail to heal in an acceptable time-frame, thus preventing the complete restoration of the tissue’s anatomical and functional integrity, increasing the likelihood of infections and apoptosis. Hydrogels are known as a drug delivery system and have the potential to cover wounds and burns on the skin. Aloe barbadensis contains over 75 different bioactive compounds which are responsible for its anti-inflammatory and antimicrobial properties. In this study, the polyacrylamide-co-methylcellulose hydrogel containing Aloe barbadensis were developed. The extract was prepared from lyophilized Aloe barbadensis, using methanolic extraction, characterized by high performance liquid chromatography and incorporated into the hydrogels. These Aloe barbadensis hydrogels were characterized by degree of swelling, Fourier-transform infrared spectroscopy, scanning electron microscopy, and thermal profiling using thermogravimetric analysis. The minimum inhibitory concentration test was done on the Aloe barbadensis extract to evaluate its antibacterial and antifungal activity in vitro. The Aloe barbadensis hydrogels and were shown to swell to almost 2000% of their original sizes. The Fourier-transform infrared spectroscopy indicated the presence of bands characteristic of Aloe barbadensis and hydrogel polymers. The basic hydrogel showed greater thermal stability than the hydrogels with Aloe barbadensis. The minimum inhibitory concentration showed inhibition of the growth of S. aureus and Salmonella spp. at specific concentrations. The hydrogel therefore presents itself as an excellent potential curative cover of cutaneous lesions.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3