Abstract
Herein, poly(amic acid) (PAA) was synthesized using 4,4’-(hexafluoroisopropylidene) diphthalic anhydride (6FDA) as a dianhydride and 2,2-bis(3-aminophenyl)hexafluoropropane (6FAm) and 2,2-bis(3-amino-4-hydroxyphenyl)hexafluoropropane (6FAm-OH) as diamines. Poly(vinyl alcohol) (PVA) at various contents (0–5.0 wt%) was blended with PAA to prepare a composite material. Then, colorless and transparent polyimide (CPI) composite films were prepared by applying various stages of heat treatment using the PAA/PVA blend film as a precursor. These film-type composites were immersed in water to completely dissolve PVA, a water-soluble polymer, and their pore sizes were investigated to determine their potential as a porous membrane. According to the results of scanning electronic microscopy (SEM), as the concentration of PVA increased from 0 to 5.0 wt% in the CPI/PVA composite films, the size of the pores resulting from the dissolution of water-soluble PVA increased. Further, the micrometer-sized pores were uniformly dispersed in the CPI films. The thermal properties, morphology, and optical transparency of the two types of CPI membranes synthesized using 6FAm and 6FAm-OH monomers were examined and compared.
Funder
National Research Foundation of Korea
Subject
Polymers and Plastics,General Chemistry
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献