Elevated Photovoltaic Performance in Medium Bandgap Copolymers Composed of Indacenodi-thieno[3,2-b]thiophene and Benzothiadiazole Subunits by Modulating the π-Bridge

Author:

An Lili,Tong JunfengORCID,Huang Yubo,Liang Zezhou,Li JianfengORCID,Yang Chunyan,Wang Xunchang

Abstract

Two random conjugated polymers (CPs), namely, PIDTT-TBT and PIDTT-TFBT, in which indacenodithieno[3,2-b]thiophene (IDTT), 3-octylthiophene, and benzothiadiazole (BT) were in turn utilized as electron-donor (D), π-bridge, and electron-acceptor (A) units, were synthesized to comprehensively analyze the impact of reducing thiophene π-bridge and further fluorination on photostability and photovoltaic performance. Meanwhile, the control polymer PIDTT-DTBT with alternating structure was also prepared for comparison. The broadened and enhanced absorption, down-shifted highest occupied molecular orbital energy level (EHOMO), more planar molecular geometry thus enhanced the aggregation in the film state, but insignificant impact on aggregation in solution and photostability were found after both reducing thiophene π-bridge in PIDTT-TBT and further fluorination in PIDTT-TFBT. Consequently, PIDTT-TBT-based device showed 185% increased PCE of 5.84% profited by synergistically elevated VOC, JSC, and FF than those of its counterpart PIDTT-DTBT, and this improvement was chiefly ascribed to the improved absorption, deepened EHOMO, raised μh and more balanced μh/μe, and optimized morphology of photoactive layer. However, the dropped PCE was observed after further fluorination in PIDTT-TFBT, which was mainly restricted by undesired morphology for photoactive layer as a result of strong aggregation even if in the condition of the upshifted VOC. Our preliminary results can demonstrate that modulating the π-bridge in polymer backbone was an effective method with the aim to enhance the performance for solar cell.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3