Study of the Effect of Methyldiethanolamine Initiator on the Recording Properties of Acrylamide Based Photopolymer

Author:

Rogers Brian,Martin Suzanne,Naydenova Izabela

Abstract

The use of Holographic Optical Elements (HOEs) in applications, such as in light shaping and redirection, requires certain characteristics such as a high Diffraction Efficiency, low angular selectivity and stability against UV damage. In order to maximize the performance of the HOEs, photosensitive materials are needed that have been optimised for the characteristics that are of particular importance in that application. At the core of the performance of these devices is the refractive index modulation created during holographic recording. Typically, a higher refractive index modulation will enable greater light Diffraction Efficiency and also operation with thinner devices, which in turn decreases the angular selectivity and the stability of the refractive index modulation introduced during recording, which is key to the longevity of the device. Solar concentrators based on volume HOEs can particularly benefit from thinner devices, because, for a solar concentrator to have a high angular working range, thinner photopolymer layers with a smaller angular selectivity are required. This paper presents an optimisation of an acrylamide-based photopolymer formulation for an improved refractive index modulation and recording speed. This was achieved by studying the effect of the concentration of acrylamide and the influence of different initiators in the photopolymer composition on the diffraction efficiency of holographic gratings. Two initiators of different molecular weights were compared: triethanolamine (TEA) and methyldiethanolamine (MDEA). A fivefold increase in the rate of grating formation was achieved through the modification of the acrylamide concentration alone, and it was also found that holograms recorded with MDEA as the initiator performed the best and recorded up to 25% faster than a TEA-based photopolymer. Finally, tests were carried out on the stability of the protected and unprotected photopolymer layers when subjected to UV light. The properties exhibited by this photopolymer composition make it a promising material for the production of optical elements and suitable for use in applications requiring prolonged exposure to UV light when protected by a thin melinex cover.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3