Analog holographic wavefront sensor for defocus and spherical aberration measurement recorded in a photopolymer

Author:

Branigan Emma1ORCID,Martin Suzanne1ORCID,Sheehan Matthew1,Murphy Kevin1ORCID

Affiliation:

1. Technological University Dublin (TU Dublin)

Abstract

An analog holographic wavefront sensor (AHWFS), for measurement of low and high order (defocus and spherical aberration) aberration modes has been developed as volume phase holograms in a photopolymer recording medium. This is the first time that high order aberrations such as spherical aberration can be sensed using a volume hologram in a photosensitive medium. Both defocus and spherical aberration were recorded in a multi-mode version of this AHWFS. Refractive elements were used to generate a maximum and minimum phase delay of each aberration which were multiplexed as a set of volume phase holograms in an acrylamide based-photopolymer layer. The single-mode sensors showed a high degree of accuracy in determining various magnitudes of defocus and spherical aberration generated refractively. The multi-mode sensor also exhibited promising measurement characteristics and similar trends to the single-mode sensors were observed. The method of quantifying defocus was improved upon and a brief study into material shrinkage and sensor linearity is presented.

Funder

Science Foundation Ireland

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3