Author:
Ha Jong-Woon,Park Jong Baek,Park Hea Jung,Hwang Do-Hoon
Abstract
3-(2-Octyldodecyl)thieno[3,2-b]thiophen was successfully synthesized as a new π-bridge with a long branched side alkyl chain. Two donor-π-bridge-acceptor type copolymers were designed and synthesized by combining this π-bridge structure, a fluorinated benzothiadiazole acceptor unit, and a thiophene or thienothiophene donor unit, (PT-ODTTBT or PTT-ODTTBT respectively) through Stille polymerization. Inverted OPV devices with a structure of ITO/ZnO/polymer:PC71BM/MoO3/Ag were fabricated by spin-coating in ambient atmosphere or N2 within a glovebox to evaluate the photovoltaic performance of the synthesized polymers (effective active area: 0.09 cm2). The PTT-ODTTBT:PC71BM-based structure exhibited the highest organic photovoltaic (OPV) device performance, with a maximum power conversion efficiency (PCE) of 7.05 (6.88 ± 0.12)%, a high short-circuit current (Jsc) of 13.96 mA/cm2, and a fill factor (FF) of 66.94 (66.47 ± 0.63)%; whereas the PT-ODTTBT:PC71BM-based device achieved overall lower device performance. According to GIWAXS analysis, both neat and blend films of PTT-ODTTBT exhibited well-organized lamellar stacking, leading to a higher charge carrier mobility than that of PT-ODTTBT. Compared to PT-ODTTBT containing a thiophene donor unit, PTT-ODTTBT containing a thienothiophene donor unit exhibited higher crystallinity, preferential face-on orientation, and a bicontinuous interpenetrating network in the film, which are responsible for the improved OPV performance in terms of high Jsc, FF, and PCE.
Funder
Korea Institute of Energy Technology Evaluation and Planning
National Research Foundation of Korea
Subject
Polymers and Plastics,General Chemistry