Electrochemical and Spectroelectrochemical Studies on the Reactivity of Perimidine–Carbazole–Thiophene Monomers towards the Formation of Multidimensional Macromolecules versus Stable π-Dimeric States

Author:

Czichy MalgorzataORCID,Janasik PatrykORCID,Wagner PawelORCID,Officer David L.,Lapkowski MieczyslawORCID

Abstract

During research on cross-linked conducting polymers, double-functionalized monomers were synthesized. Two subunits potentially able to undergo oxidative coupling were used—perimidine and, respectively, carbazole, 3,6-di(hexylthiophene)carbazole or 3,6-di(decyloxythiophene)carbazole; alkyl and alkoxy chains as groups supporting molecular ordering and 14H-benzo[4,5]isoquinone[2,1-a]perimidin-14-one segment promoting CH⋯O interactions and π–π stacking. Electrochemical, spectroelectrochemical, and density functional theory (DFT) studies have shown that potential-controlled oxidation enables polarization of a specific monomer subunit, thus allowing for simultaneous coupling via perimidine and/or carbazole, but mainly leading to dimer formation. The reason for this was the considerable stability of the dicationic and tetracationic π-dimers over covalent bonding. In the case of perimidine-3,6-di(hexylthiophene)carbazole, the polymer was not obtained due to the steric hindrance of the alkyl substituents preventing the coupling of the monomer radical cations. The only linear π-conjugated polymer was obtained through di(decyloxythiophene)carbazole segment from perimidine-di(decyloxythiophene)-carbazole precursor. Due to the significant difference in potentials between subsequent oxidation states of monomer, it was impossible to polarize the entire molecule, so that both directions of coupling could be equally favored. Subsequent oxidation of this polymer to polarize the side perimidine groups did not allow further crosslinking, because rather the π–π interactions between these perimidine segments dominate in the solid product.

Funder

Rector’s habilitation grant, Silesian Technical University

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3