Performance of Nano- and Microcalcium Carbonate in Uncrosslinked Natural Rubber Composites: New Results of Structure–Properties Relationship

Author:

Phuhiangpa Nantikan,Ponloa Worachai,Phongphanphanee Saree,Smitthipong Wirasak

Abstract

Calcium carbonate (CaCO3) is one of the most important inorganic powders and is widely used as filler in order to reduce costs in the rubber industry. Nanocalcium carbonate reduces costs and acts as a semireinforcing filler that improves the mechanical properties of rubber composites. The objective of this study was to investigate the effect of nano-CaCO3 (NCC) and micro-CaCO3 (MCC) on the properties of natural rubber composites, in particular, new results of structure–properties relationship. The effects of NCC/MCC on the properties of rubber composites, such as Mooney viscosity, bound rubber, Mullins effect, and Payne effect, were investigated. The result of the Mullins effect of rubber composites filled with NCC was in good agreement with the results of Mooney viscosity and bound rubber, with higher Mooney viscosity and bound rubber leading to higher stress to pull the rubber composites. The Payne effect showed that the value of different storage moduli (ΔG’) of rubber composites filled with 25 parts per hundred rubber (phr) NCC was the lowest due to weaker filler network, while the rubber supplemented with 100 phr NCC had more significant ΔG’ values with increase in strain. The results of rubber composites filled with MCC showed the same tendency as those of rubber composites filled with NCC. However, the effect of specific surface area of NCC on the properties of rubber composites was more pronounced than those of rubber composites filled with MCC. Finite element analysis of the mechanical property of rubber composites was in good agreement with the result from the experiment. The master curves of time–temperature superposition presented lower free volume in the composites for higher loading of filler, which would require more relaxation time of rubber molecules. This type of nanocalcium carbonate material can be applied to tailor the properties and processability of rubber products.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3