The Influence of the Dispersion Method on the Morphological, Curing, and Mechanical Properties of NR/SBR Reinforced with Nano-Calcium Carbonate

Author:

Damircheli Mehrnoosh1,MajidiRad AmirHossein2ORCID

Affiliation:

1. Mechanical Engineering Department, Lafayette College, Easton, PA 18042, USA

2. School of Engineering, University of North Florida, Jacksonville, FL 32224, USA

Abstract

There are several reasons for the development of nanopolymer compounds, such as improving physical, mechanical, and chemical properties, increasing lifespan, reducing costs, and decreasing negative environmental impact. The compatibility of two rubbers and mineral nanofillers in nanocomposites is a challenge that needs to be studied, and the effect of nanofillers on morphological, physical, and mechanical properties should be investigated accordingly. In this study, calcium carbonate nanoparticles were added to a polymer compound that included natural rubber (NR), styrene-butadiene rubber (SBR), vulcanization accelerators, and other additives. For mixing nanoparticles in the polymer matrix, various methods were used, including the solvent method in toluene and W410 solvents and the surface modification of calcium carbonate nanoparticles with stearic acid. The effect of dispersion nanoparticles in nanocomposite specimens on morphology, curing characteristics, and mechanical properties was studied. The morphologies of specimens were determined by X-ray diffraction (XRD) analysis and field emission scanning electron microscopy (FESEM). The particle size of the nanocomposite was approximately 34 nm, and the interlayer spacing between crystal plates increased from 2.81 nm to 3.03 nm. These results indicate a uniform dispersion of nanoparticles, specifically with an optimum content of 3.52%, in the compounds prepared through all mixing methods, with no agglomeration observed in the nanocomposites. The results of the nanocomposites’ curing characterization demonstrate that with the addition of nanoparticles, a strong bond is created in the polymer chains, and curing properties are improved. Among the dispersion methods, the highest percentage improvement in curing properties is observed with the solvent method W410. To evaluate the effect of the addition of calcium carbonate nanoparticles and the dispersion method on improving mechanical properties, tensile, tear, hardness, and rebound resilience tests were performed. In tensile tests, the surface modification method showed the highest enhancement in ultimate stress (80%), followed by the W410 method (64%) and toluene method (63.7%). Tear strength improvements were highest in the W410-solvent sample (80%), followed by the surface modification method (57%) and the solvent-toluene method (50%). The W410 method resulted in the hardest samples, while the surface-modified samples had the lowest hardness. The addition of CaCO3 nanofillers reduced rebound resilience, with the W410 method experiencing the largest reduction (10.64%), followed by the toluene method (6.38%), and with the surface-modified samples showing the lowest reduction (4.25%). The results show that in the W410 solvent method, the nanocomposite is more elastic than for other methods. Additionally, for most of the mechanical properties, the W410 method results in the most growth in improvement.

Funder

University of North Florida

Lafayette College

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3