Electrospun CNF Supported Ceramics as Electrochemical Catalysts for Water Splitting and Fuel Cell: A Review

Author:

Verma Sahil,Sinha-Ray Sumit,Sinha-Ray SumanORCID

Abstract

With the per capita growth of energy demand, there is a significant need for alternative and sustainable energy resources. Efficient electrochemical catalysis will play an important role in sustaining that need, and nanomaterials will play a crucial role, owing to their high surface area to volume ratio. Electrospun nanofiber is one of the most promising alternatives for producing such nanostructures. A section of key nano-electrocatalysts comprise of transition metals (TMs) and their derivatives, like oxides, sulfides, phosphides and carbides, etc., as well as their 1D composites with carbonaceous elements, like carbon nanotubes (CNTs) and carbon nanofiber (CNF), to utilize the fruits of TMs’ electronic structure, their inherent catalytic capability and the carbon counterparts’ stability, and electrical conductivity. In this work, we will discuss about such TM derivatives, mostly TM-based ceramics, grown on the CNF substrates via electrospinning. We will discuss about manufacturing methods, and their electrochemical catalysis performances in regards to energy conversion processes, dealing mostly with water splitting, the metal–air battery fuel cell, etc. This review will help to understand the recent evolution, challenges and future scopes related to electrospun transition metal derivative-based CNFs as electrocatalysts.

Funder

Department of Scientific and Industrial Research, Ministry of Science and Technology

Indian Institute of Technology Mandi

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Reference126 articles.

1. Electrochemical Methods: Fundamentals and Applications;Bard,1980

2. Catalysis in Electrochemistry: From Fundamental Aspects to Strategies for Fuel Cell Development,2011

3. Renewable and metal-free carbon nanofibre catalysts for carbon dioxide reduction

4. Electrospun and solution blown three-dimensional carbon fiber nonwovens for application as electrodes in microbial fuel cells

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3