Tailoring Mott−Schottky RuO2/MgFe‐LDH Heterojunctions in Electrospun Microfibers: A Bifunctional Electrocatalyst for Water Electrolysis

Author:

Nagappan Sreenivasan12,Jayan Rahul3,Rajagopal Nisarga4,Krishnan Adithya V4,Islam Md Mahbubul3,Kundu Subrata12ORCID

Affiliation:

1. Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India

2. Electrochemical Process Engineering (EPE) Division CSIR‐Central Electrochemical Research Institute (CECRI) Karaikudi Tamil Nadu 630006 India

3. Department of Mechanical Engineering Wayne State University Detroit MI 48201 USA

4. Centre for Education (CFE) CSIR‐Central Electrochemical Research Institute (CECRI) Karaikudi Tamil Nadu 630 003 India

Abstract

AbstractHydrogen is a fuel of the future that has the potential to replace conventional fossil fuels in several applications. The quickest and most effective method of producing pure hydrogen with no carbon emissions is water electrolysis. Developing highly active electrocatalysts is crucial due to the slow kinetics of oxygen and hydrogen evolution, which limit the usage of precious metals in water splitting. Interfacial engineering of heterostructures has sparked widespread interest in improving charge transfer efficiency and optimizing adsorption/desorption energetics. The emergence of a built‐in‐electric field between RuO2 and MgFe‐LDH improves the catalytic efficiency toward water splitting reaction. However, LDH‐based materials suffer from poor conductivity, necessitating the design of 1D materials by integration of RuO2/ MgFe‐LDH to enhance catalytic properties through large surface areas and high electronic conductivity. Experimental results demonstrate lower overpotentials (273 and 122 mV at 10 mA cm−2) and remarkable stability (60 h) for the RuO2/MgFe‐LDH/Fiber heterostructure in OER (1 m KOH) and HER (0.5 m H2SO4) reactions. Density functional theory (DFT) unveils a synergistic mechanism at the RuO2/MgFe‐LDH interface, leading to enhanced catalytic activity in OER and improved adsorption energy for hydrogen atoms, thereby facilitating HER catalysis.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3