Maneuverability and Hydrodynamics of a Tethered Underwater Robot Based on Mixing Grid Technique
-
Published:2021-05-22
Issue:6
Volume:9
Page:561
-
ISSN:2077-1312
-
Container-title:Journal of Marine Science and Engineering
-
language:en
-
Short-container-title:JMSE
Author:
Wu Jiaming,Xu Shunyuan,Liao Hua,Ma Chenghua,Yang Xianyuan,Wang Haotian,Zhang Tian,Han Xiangxi
Abstract
The maneuverability and hydrodynamic performance of the tethered underwater robot in a uniform flow field is investigated. In this research, a tethered underwater robot symmetrically installed with NACA66 hydrofoils and Ka 4-70/19A ducted propellers around its main body is first constructed. The method of overlapping grid combined with sliding mesh is applied in the numerical simulations, and the principle of relative motion is adopted to describe the hydrodynamic responses of the tethered underwater robot during the robot manipulation. The reliability of the CFD methods applied in this research is verified by experimental results, and the comparison between numerical and experimental ones shows that there is very little difference being found. The numerical results indicate that computational cost due to the research’s large-scale domain can be effectively reduced by the adopted numerical methods, hydrofoils’ control effect is greatly influenced by the towing speeds, and thrusts issued from the ducted propellers are related to the tethered underwater robot’s position and towing speed.
Funder
the National Key Research and Development Program of China
the National Natural Science Foundation of China
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Inertial-measurement-based catenary shape estimation of underwater cables for tethered robots;2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2022-10-23