Artificial Intelligence Application on Sediment Transport

Author:

Kim Hyun DongORCID,Aoki Shin-ichi

Abstract

When erosion occurs, sand beaches cannot maintain sufficient sand width, foreshore slopes become steeper due to frequent erosion effects, and beaches are trapped in a vicious cycle of vulnerability due to incident waves. Accordingly, beach nourishment can be used as a countermeasure to simultaneously minimize environmental impacts. However, beach nourishment is not a permanent solution and requires periodic renourishment after several years. To address this problem, minimizing the period of renourishment is an economical alternative. In the present study, using the Tuvaluan coast with its cross-sectional gravel nourishment site, four different test cases were selected for the hydraulic model experiment aimed at discovering an effective nourishment strategy to determine effective alternative methods. Numerical simulations were performed to reproduce gravel nourishment; however, none of these models simultaneously simulated the sediment transport of gravel and sand. Thus, an artificial neural network, a deep learning model, was developed using hydraulic model experiments as training datasets to analyze the possibility of simultaneously accomplishing the sediment transport of sand and gravel and supplement the shortcomings of the numerical models.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference21 articles.

1. Gravel beaches nourishment: Modelling the equilibrium beach profile

2. Beach Nourishment and Protection,1995

3. The Effect of Grain Size on the Distribution of Small Invertebrates Inhabiting the Beaches of Puget Sound

4. Assessment of a gravel nourishment project fronting a seawall at Marina di Pisa, Italy;Cammelli;J. Coast. Res.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3