The Modeling of a River Impacted with Tailings Mudflows Based on the Differentiation of Spatiotemporal Domains and Assessment of Water–Sediment Interactions Using Machine Learning Approaches

Author:

Moura João Paulo1ORCID,Pacheco Fernando António Leal2ORCID,Valle Junior Renato Farias do3ORCID,de Melo Silva Maytê Maria Abreu Pires3,Pissarra Teresa Cristina Tarlé4ORCID,Melo Marília Carvalho de5,Valera Carlos Alberto6ORCID,Sanches Fernandes Luís Filipe1ORCID,Rolim Glauco de Souza4

Affiliation:

1. CITAB—Centro de Investigação e Tecnologias Agroambientais e Biológicas, Universidade de Trás-os-Montes e Alto Douro, Ap. 1013, 5001-801 Vila Real, Portugal

2. CQVR—Centro de Química de Vila Real, Universidade de Trás-os-Montes e Alto Douro, Ap. 1013, 5001-801 Vila Real, Portugal

3. Instituto Federal do Triângulo Mineiro, Campus Uberaba, Laboratório de Geoprossessamento, Uberaba 38064-790, MG, Brazil

4. Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista (UNESP), Via de Acesso Prof. Paulo Donato Castellane, s/n, Jaboticabal 14884-900, SP, Brazil

5. Secretaria de Estado de Meio Ambiente e Desenvolvimento Sustentável, Cidade Administrativa do Estado de Minas Gerais, Rodovia João Paulo II, 4143, Bairro Serra Verde, Belo Horizonte 31630-900, MG, Brazil

6. Regional Coordination of Environmental Justice Promoters of the Paranaíba and Baixo Rio Grande River Basins, Rua Coronel Antônio Rios, 951, Uberaba 38061-150, MG, Brazil

Abstract

The modeling of metal concentrations in large rivers is complex because the contributing factors are numerous, namely, the variation in metal sources across spatiotemporal domains. By considering both domains, this study modeled metal concentrations derived from the interaction of river water and sediments of contrasting grain size and chemical composition, in regions of contrasting seasonal precipitation. Statistical methods assessed the processes of metal partitioning and transport, while artificial intelligence methods structured the dataset to predict the evolution of metal concentrations as a function of environmental changes. The methodology was applied to the Paraopeba River (Brazil), divided into sectors of coarse aluminum-rich natural sediments and sectors enriched in fine iron- and manganese-rich mine tailings, after the collapse of the B1 dam in Brumadinho, with 85–90% rainfall occurring from October to March. The prediction capacity of the random forest regressor was large for aluminum, iron and manganese concentrations, with average precision > 90% and accuracy < 0.2.

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3