A Data-Driven Approach to State of Health Estimation and Prediction for a Lithium-Ion Battery Pack of Electric Buses Based on Real-World Data

Author:

Xu NanORCID,Xie Yu,Liu Qiao,Yue Fenglai,Zhao Di

Abstract

In the era of big data, using big data to realize the online estimation of battery SOH has become possible. Traditional solutions based on theoretical models cannot take into account driving behavior and complicated environmental factors. In this paper, an approximate SOH degradation model based on real operating data and environmental temperature data of electric vehicles (EVs) collected with a big data platform is proposed. Firstly, the health indicators are extracted from the historical operating data, and the equivalent capacity at 25 °C is obtained based on the capacity–temperature empirical formula and the capacity offset. Then, the attenuation rate during each charging and discharging process is calculated by combining the operating data and the environmental temperature. Finally, the long short-term memory (LSTM) neural network is used to learn the degradation trend of the battery and predict the future decline trend. The test results show that the proposed method has better performance.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3