Possibilities of Increasing the Durability of Dies Used in the Extrusion Process of Valve Forgings from Chrome-Nickel Steel by Using Alternative Materials from Hot-Work Tool Steels

Author:

Hawryluk Marek1ORCID,Janik Marta12,Zwierzchowski Maciej1,Lachowicz Marzena Małgorzata1ORCID,Krawczyk Jakub1

Affiliation:

1. Department of Metal Forming, Welding and Metrology, Wroclaw University of Science and Technology, Lukasiewicza 5 Street, 50-370 Wroclaw, Poland

2. MAHLE Polska, Mahle 6, 63-700 Krotoszyn, Poland

Abstract

This study refers to an analysis of the dies used in the first operation of producing a valve forging from chromium-nickel steel NC3015. The analyzed process of manufacturing forgings of exhaust valves is realized in the co-extrusion technology, followed by forging in closed dies. This type of technology is difficult to master, mainly due to the increased adhesion of the charge material to the tool substrate as well as the complex conditions of the tools’ operations, which are caused by the cyclic thermo-mechanical loads and also the hard tribological conditions. The average durability of tools made from tool steel WLV (1.2365), subjected to thermal treatment and nitriding, equals about 1000 forgings. In order to perform an in-depth analysis, a complex analysis of the presently realized technology was conducted in combination with multi-variant numerical simulations. The obtained results showed numerous cracks on the tools, especially in the cross-section reduction area, as well as sticking of the forging material, which, with insufficient control of the tribological conditions, can cause premature wear of the dies. In order to increase the durability of forging dies, alternative materials made of hot work tool steels were used: QRO90 Supreme, W360, and Unimax. The preliminary tests showed that the best results were obtained for QRO90, as the average durability for the tools made of this steel equaled about 1200 forgings (with an increase in both the minimal and maximal values), with reference to the 1000 forgings for the material applied so far.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3