Affiliation:
1. National Electric Power Conversion and Control Engineering Technology Research Center, Hunan University, Changsha 410012, China
Abstract
Photovoltaic-storage integrated systems, which combine distributed photovoltaics with energy storage, play a crucial role in distributed energy systems. Evaluating the health status of photovoltaic-storage integrated energy stations in a reasonable manner is essential for enhancing their safety and stability. To achieve an accurate and continuous assessment of the health status of photovoltaic-storage integrated energy stations, a dynamic evaluation method is proposed in this study. This method integrates both subjective and objective characteristics. Initially, considering the evaluation needs of low-carbon operation and health status for photovoltaic-storage integrated energy stations, a comprehensive health status evaluation system is developed. The significance of each indicator is subjectively analyzed, while also considering objective characteristics and sensitivity of indicators. The integration of subjective and objective characteristics is achieved using principles from game theory. Subsequently, through the establishment of the Grey-TOPSIS evaluation model, both positive and negative correlations of the health status of photovoltaic-storage integrated energy stations are determined, resulting in the derivation of a health status vector. Furthermore, the introduction of time-weight vectors and the incorporation of a time dimension enable dynamic evaluation and the comprehensive observation of health status. Finally, the scientific validity and effectiveness of the proposed evaluation method are demonstrated through practical examples, with comparisons made to traditional evaluation methods. The results clearly indicate that this method offers higher sensitivity when evaluating the health of photovoltaic-storage integrated energy stations.
Funder
National Key R&D Program of China