Effects of Biochar-Coated Nitrogen Fertilizer on the Yield and Quality of Bok Choy and on Soil Nutrients

Author:

Bi Haiwen1,Xu Jiafeng2,Li Kaixuan1,Li Kaiang1,Cao Huanling1,Zhao Chao1ORCID

Affiliation:

1. National Engineering Research Center for Wood-Based Resource Utilization, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou 311300, China

2. School of Information Sciences and Technology, Zhejiang Shuren University, Hangzhou 311300, China

Abstract

This study was aimed at problems associated with low fertilizer using efficiency, excessive nitrate content of vegetables, and soil degradation in greenhouse vegetable production. A pot experiment was conducted to assess the effects of applying biochar-coated nitrogen fertilizer (BCNF) on the yield, quality, and nitrate content of bok choy (Brassica rapa subsp. Chinensis) as well as on soil nutrients in greenhouses. Four treatments were set up as follows: no nitrogen fertilizer application (BA), chemical nitrogen fertilizer application (CK), biochar-coated nitrogen fertilizer application (BCNF, the amount of nitrogen was equal to that of chemical fertilizer), and reduced biochar-coated nitrogen fertilizer application (D-BCNF, the amount of fertilizer was 80% of BCNF). Compared with the other treatments, BCNF treatment increased chlorophyll content, plant height, maximum leaf length, maximum leaf width, and other biological characters of bok choy. Compared with CK treatment, BCNF treatment increased the fresh weight of bok choy by 14.02%, while reducing the root–shoot ratio and nitrate content by 19.1% and 46%, respectively. It was further found that the application of BCNF could effectively increase the content of soil organic matter; reduce the leaching loss of nitrate nitrogen, exchangeable calcium and magnesium; and effectively improve nitrogen use efficiency. Therefore, the application of BCNF can not only reduce the loss of fertilizer nutrients, promote plant growth, and improve fertilizer utilization, but it can also improve soil nutrients, fix carbon, and reduce emissions. It is a new type of environmental protection fertilizer with application prospects.

Funder

National Natural Science Foundation of China

Commonweal Project of Science and Technology Agency of Zhejiang Province of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3