Effects of chemical-based fertilizer replacement with biochar-based fertilizer on albic soil nutrient content and maize yield

Author:

Yin Dawei1,Yang Xiangyu1,Wang Haize1,Guo Xiaohong1,Wang Shiqiang1,Wang Zhihui1,Ding Guohua2,Yang Guang2,Zhang Jianing1,Jin Liang3,Lan Yu4

Affiliation:

1. College of Agricultural Science, Heilongjiang Bayi Agricultural University , Daqing 163319 , China

2. College of Tillage and Cultivation of Heilongjiang Province, Heilongjiang Academy of Agricultural Sciences , Harbin 150000 , China

3. College of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences , Beijing 100097 , China

4. Key Laboratory of Biochar and Soil Improvement, Ministry of Agriculture and Rural Affairs, P. R., Shenyang Agricultural University , Shenyang 110161 , China

Abstract

Abstract Biochar-based fertilizers are used to improve soil’s physiochemical and biological properties and increase fertilizer utilization rate. Therefore, a technological model of biochar-based fertilizers is essential for the reduced application. This study was conducted to determine the effects of the different levels of biochar-based fertilizer applications on soil and plant nutrient content, as well as maize yield. Biochar-based fertilizer increased the total N content of maize stem and kernel and the total P content of maize axis and kernel. Biochar-based fertilizer increased the total P but decreased the total K of maize plants while increasing the fertilizer’s partial productivity. Treatment B1 (600.00 kg hm−2 of biochar-based fertilizer) increased the dry-matter weight of the maize at silking and filling stages by 1.60 and 15.83%. Treatment B1 increased the ear length, diameter, and plant height. Compared with BCK (600.00 kg hm−2 of conventional fertilizer), the yield of B1 was increased by 9.23%, and the difference was significant (p < 0.05). Biochar-based fertilizer treatments B2–B5 (biochar-based fertilizer reduced by 5–20%) reduced maize yield, but there was no significant difference between their yield and BCK. This study aimed to provide a basic understanding and reference for maize fertilizer reduction with good application prospects.

Publisher

Walter de Gruyter GmbH

Subject

General Agricultural and Biological Sciences,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3