Abstract
To solve the problem of traversal multi-target path planning for an unmanned cruise ship in an unknown obstacle environment of lakes, this study proposed a hybrid multi-target path planning algorithm. The proposed algorithm can be divided into two parts. First, the multi-target path planning problem was transformed into a traveling salesman problem, and an improved Grey Wolf Optimization (GWO) algorithm was used to calculate the multi-target cruise sequence. The improved GWO algorithm optimized the convergence factor by introducing the Beta function, which can improve the convergence speed of the traditional GWO algorithm. Second, based on the planned target sequence, an improved D* Lite algorithm was used to implement the path planning between every two target points in an unknown obstacle environment. The heuristic function in the D* Lite algorithm was improved to reduce the number of expanded nodes, so the search speed was improved, and the planning path was smoothed. The proposed algorithm was verified by experiments and compared with the other four algorithms in both ordinary and complex environments. The experimental results demonstrated the strong applicability and high effectiveness of the proposed method.
Funder
National Natural Science Foundation of China
Beijing Excellent Talent Training Support Project for Young Top-Notch 597 Team
Beijing Talents Project
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献