Research on Path Planning for Unmanned Surface Vessels Based on AIS Data

Author:

Qian Dongjin,Liu Haiqing,Wang Shengli,Zhang Shuo,Shi Jingyi

Abstract

Abstract To address the issues of poor endpoint convergence and suboptimal path quality in global path planning for unmanned surface vessels (USVs), this paper proposes an endpoint-convergence oriented improved genetic algorithm based on AIS data. Firstly, utilizing a genetic algorithm with an endpoint-convergence objective function, a set of paths with strong endpoint convergence is selected. Secondly, to overcome the limitations of a single optimization algorithm, a multi-objective path planning approach is employed using a genetic algorithm, thereby improving the distance and trajectory smoothness in global path planning for unmanned ships. Finally, the planned paths are evaluated by comparing them with the real paths from AIS data. The simulation results demonstrate that the proposed method outperforms other traditional algorithms in terms of average path turn count and turn angle, reducing them by an average of 35.41% and 35.72%, respectively. Moreover, the proposed method exhibits the smallest error compared to the real trajectories, with an average reduction of 18.26%. These results validate the effectiveness and rationality of the proposed approach in improving path quality, reducing path turn count, and achieving better alignment with actual trajectories.

Publisher

IOP Publishing

Reference10 articles.

1. A hybrid multi-target path planning algorithm for unmanned cruise ship in an unknown obstacle environment;Yu;Sensors,2022

2. Data-driven based automatic maritime routing from massive AIS trajectories in the face of disparity;Zhang;Ocean Engineering,2018

3. Data-driven Ship Path Planning in the Bridge Group Waters;Wu;Journal of Wuhan University of Technology (Transportation Science & Engineering),2020

4. Research on the intelligent ship passage decision optimization algorithm in AIS environment;Li;Ship Science and Technology,2023

5. Path Planning and Smoothing for Unmanned Surface Vehicle Based on Improved Ant Colony Optimization;Sun;Electronic Science and Technology,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3