On-Machine Detection of Sub-Microscale Defects in Diamond Tool Grinding during the Manufacturing Process Based on DToolnet

Author:

Xue Wen,Zhao Chenyang,Fu Wenpeng,Du Jianjun,Yao Yingxue

Abstract

Nowadays, tool condition monitoring (TCM), which can prevent the waste of resources and improve efficiency in the process of machining parts, has developed many mature methods. However, TCM during the production of cutting tools is less studied and has different properties. The scale of the defects in the tool production process is tiny, generally between 10 μm and 100 μm for diamond tools. There are also very few samples with defects produced by the diamond tool grinding process, with only about 600 pictures. Among the many TCM methods, the direct inspection method using machine vision has the advantage of obtaining diamond tool information on-machine at a low cost and with high efficiency, and the method is accurate enough to meet the requirements of this task. Considering the specific, above problems, to analyze the images acquired by the vision system, a neural network model that is suitable for defect detection in diamond tool grinding is proposed, which is named DToolnet. DToolnet is developed by extracting and learning from the small-sample diamond tool features to intuitively and quickly detect defects in their production. The improvement of the feature extraction network, the optimization of the target recognition network, and the adjustment of the parameters during the network training process are performed in DToolnet. The imaging system and related mechanical structures for TCM are also constructed. A series of validation experiments is carried out and the experiment results show that DToolnet can achieve an 89.3 average precision (AP) for the detection of diamond tool defects, which significantly outperforms other classical network models. Lastly, the DToolnet parameters are optimized, improving the accuracy by 4.7%. This research work offers a very feasible and valuable way to achieve TCM in the manufacturing process.

Funder

Shenzhen Science and Technology Innovation Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3