Author:
Wang Qin,Wu Yu,Deng Xin,Xiang Liping,Xu Ke,Li Yongliang,Xie Yangsu
Abstract
Due to their broadband optical absorption ability and fast response times, carbon nanotube (CNT)-based materials are considered promising alternatives to the toxic compounds used in commercial infrared sensors. However, the direct use of pure CNT networks as infrared sensors for simple resistance read-outs results in low sensitivity values. In this work, MoS2 nanoflowers are composited with CNT networks via a facile hydrothermal process to increase the bolometric performance. The thermal diffusivity (α) against temperature (T) is measured using the transient electro-thermal (TET) technique in the range of 320 K to 296 K. The α-T curve demonstrates that the composite containing MoS2 nanoflowers provides significant phonon scattering and affects the intertube interfaces, decreasing the α value by 51%. As the temperature increases from 296 K to 320 K, the relative temperature coefficient of resistance (TCR) increases from 0.04%/K to 0.25%/K. Combined with the enhanced light absorption and strong anisotropic structure, this CNT–MoS2 composite network exhibits a more than 5-fold greater surface temperature increase under the same laser irradiation. It shows up to 18-fold enhancements in resistive responsivity ((Ron − Roff)/Roff) compared with the pure CNT network for a 1550 nm laser at room temperature (RT).
Funder
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province
Project of Educational Commission of Guangdong Province of China
Subject
General Materials Science,General Chemical Engineering
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献