Novel Brain-Derived Neurotrophic Factor Controlled-Release Formulation Promotes Neuroprotection In Vitro

Author:

Perez Isabel1ORCID,Strauss Elisheva2ORCID,Vyas Shivani1ORCID,Schloss Rene S.1ORCID,Yarmush Martin L.1ORCID

Affiliation:

1. Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Rd., Piscataway, NJ 08854, USA

2. Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, 604 Allison Rd., Piscataway, NJ 08854, USA

Abstract

Traumatic brain injury (TBI) leads to a cascade of primary and secondary neurodegenerative events, often causing lifelong disabilities. Brain-derived neurotrophic factor (BDNF) is a potential therapeutic for functional recovery of neurons. Unfortunately, BDNF is unstable and expensive, making direct infusion impractical. Therefore, we sought to develop a controlled release formulation to deliver BDNF. Our therapeutic construct encapsulates BDNF in poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs), and further encapsulates these NPs in an alginate hydrogel. Encapsulating BDNF within NPs protects and assists in drug delivery, while further encapsulating the BDNF-NPs in alginate enables localization and sustained release. The BDNF-NPs were synthesized and evaluated for size, stability and BDNF release profile. A MATLAB model was developed to determine the approximate quantity of BDNF-NPs needed to evaluate therapeutic efficacy in neurons injured with hydrogen peroxide. We then compared the therapeutic efficacy and BDNF release profile of these BDNF-NPs to our novel alginate/BDNF-NP formulation. We have successfully designed and fabricated a double encapsulation positionally controllable construct that preserves BDNF bioactivity and extends its release. We also demonstrated that very low dosages of BDNF may be equally effective in promoting neuroprotection, thereby potentially reducing therapeutic costs without compromising efficacy. Our novel formulation offers a promising avenue for treating severe TBI and other neurological disorders which would benefit from a long-lasting and positionally controllable neuroprotective treatment. This approach can easily accommodate additional biologics for localized drug delivery with minimal re-formulation.

Funder

National Institute of General Medical Sciences

New Jersey Commission on Spinal Cord Research

Publisher

World Scientific Pub Co Pte Ltd

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3