Pinning and Anharmonic Phonon Effect of Quasi-Free-Standing Bilayer Epitaxial Graphene on SiC

Author:

Sun Li,Wang Peng,Xie Xuejian,Chen Xiufang,Yu FapengORCID,Li Yanlu,Xu Xiangang,Zhao Xian

Abstract

Epitaxial graphene on SiC without substrate interaction is viewed as one of the most promising two-dimensional (2D) materials in the microelectronics field. In this study, quasi-free-standing bilayer epitaxial graphene (QFSBEG) on SiC was fabricated by H2 intercalation under different time periods, and the temperature-dependent Raman spectra were recorded to evaluate the intrinsic structural difference generated by H2 time duration. The G peak thermal lineshift rates dω/dT showed that the H2 intercalation significantly weakened the pinning effect in epitaxial graphene. Furthermore, the G peak dω/dT value showed a perspicuous pinning effect disparity of QFSBEG samples. Additionally, the anharmonic phonon effect was investigated from the Raman lineshift of peaks. The physical mechanism responsible for dominating the G-mode temperature-dependent behavior among samples with different substrate coupling effects was elucidated. The phonon decay process of different samples was compared as the temperature increased. The evolution from in situ grown graphene to QFSBEG was determined. This study will expand the understanding of QFSBEG and pave a new way for its fabrication.

Funder

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation

Basic Research Operation Funds of Shandong University

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3