Exact Solutions for Torsion and Warping of Axial-Loaded Beam-Columns Based on Matrix Stiffness Method

Author:

Pan Wen-HaoORCID,Zhao Chuan-Hao,Tian YuanORCID,Lin Kai-QiORCID

Abstract

The typically-used element torsional stiffness GJ/L (where G is the shear modulus, J the St. Venant torsion constant, and L the element length) may severely underestimate the torsional stiffness of thin-walled nanostructural members, due to neglecting element warping deformations. In order to investigate the exact element torsional stiffness considering warping deformations, this paper presents a matrix stiffness method for the torsion and warping analysis of beam-columns. The equilibrium analysis of an axial-loaded torsion member is conducted, and the torsion-warping problem is solved based on a general solution of the established governing differential equation for the angle of twist. A dimensionless factor is defined to consider the effect of axial force and St. Venant torsion. The exact element stiffness matrix governing the relationship between the element-end torsion/warping deformations (angle and rate of twist) and the corresponding stress resultants (torque and bimoment) is derived based on a matrix formulation. Based on the matrix stiffness method, the exact element torsional stiffness considering the interaction of torsion and warping is derived for three typical element-end warping conditions. Then, the exact element second-order stiffness matrix of three-dimensional beam-columns is further assembled. Some classical torsion-warping problems are analyzed to demonstrate the established matrix stiffness method.

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

Reference28 articles.

1. Developing the mechanical models for nanomaterials;Compos. Part A,2007

2. Graphene-related nanomaterials: Tuning properties by functionalization;Nanoscale,2013

3. Giannopoulos, G.I., and Georgantzinos, S.K. (2021). A tunable metamaterial joint for mechanical shock applications inspired by carbon nanotubes. Appl. Sci., 11.

4. Trahair, N.S., Bradford, M.A., Nethercot, D.A., and Gardner, L. (2008). The Behaviour and Design of Steel Structures to EC3, Taylor & Francis. [4th ed.].

5. Chen, J. (2011). Stability of Steel Structures Theory and Design, Science Press. [5th ed.]. (In Chinese).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3