Abstract
The quantization of games expand the players strategy space, allowing the emergence of more equilibriums. However, finding these equilibriums is difficult, especially if players are allowed to use mixed strategies. The size of the exploration space expands so much for quantum games that makes far harder to find the player’s best strategy. In this work, we propose a method to learn and visualize mixed quantum strategies and compare them with their classical counterpart. In our model, players do not know in advance which game they are playing (pay-off matrix) neither the action selected nor the reward obtained by their competitors at each step, they only learn from an individual feedback reward signal. In addition, we study both the influence of entanglement and noise on the performance of various quantum games.
Subject
Physics and Astronomy (miscellaneous),Astronomy and Astrophysics,Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献