Maximizing Local Rewards on Multi-Agent Quantum Games through Gradient-Based Learning Strategies

Author:

Silva Agustin1ORCID,Zabaleta Omar Gustavo1ORCID,Arizmendi Constancio Miguel1ORCID

Affiliation:

1. ICYTE (Instituto de Investigaciones Científicas y Tecnológicas), Mar del Plata B7600, Argentina

Abstract

This article delves into the complex world of quantum games in multi-agent settings, proposing a model wherein agents utilize gradient-based strategies to optimize local rewards. A learning model is introduced to focus on the learning efficacy of agents in various games and the impact of quantum circuit noise on the performance of the algorithm. The research uncovers a non-trivial relationship between quantum circuit noise and algorithm performance. While generally an increase in quantum noise leads to performance decline, we show that low noise can unexpectedly enhance performance in games with large numbers of agents under some specific circumstances. This insight not only bears theoretical interest, but also might have practical implications given the inherent limitations of contemporary noisy intermediate-scale quantum (NISQ) computers. The results presented in this paper offer new perspectives on quantum games and enrich our understanding of the interplay between multi-agent learning and quantum computation. Both challenges and opportunities are highlighted, suggesting promising directions for future research in the intersection of quantum computing, game theory and reinforcement learning.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference37 articles.

1. Von Neumann, J., and Morgenstern, O. (1947). Theory of Games and Economic Behavior, Princeton University Press. [2nd rev. ed.].

2. Quantum games and quantum strategies;Eisert;Phys. Rev. Lett.,1999

3. Multiplayer quantum games;Benjamin;Phys. Rev. A,2001

4. Experimental realization of quantum games on a quantum computer;Du;Phys. Rev. Lett.,2002

5. Altepeter, J., Hall, M., Medic, M., Patel, M., Meyer, D., and Kumar, P. (2009). Nonlinear Optics: Materials, Fundamentals and Applications, Optica Publishing Group.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3