Influence of Pressure, Temperature and Discharge Rate on the Electrical Performances of a Commercial Pouch Li-Ion Battery

Author:

Aiello Luigi1ORCID,Ruchti Peter2,Vitzthum Simon3,Coren Federico1ORCID

Affiliation:

1. MBTS GmbH—Stremayrgasse 16, 8010 Graz, Austria

2. ZwickRoell Testing Systems GmbH, Flugplatzstr. 5, 8280 Fürstenfeld, Austria

3. ZwickRoell GmbH & Co. KG, August-Nagel-Str. 11, 89079 Ulm, Germany

Abstract

In this study, the performances of a pouch Li-ion battery (LIB) with respect to temperature, pressure and discharge-rate variation are measured. A sensitivity study has been conducted with three temperatures (5 °C, 25 °C, 45 °C), four pressures (0.2 MPa, 0.5 MPa, 0.8 MPa, 1.2 MPa) and three electrical discharge rates (0.5 C, 1.5 C, 3.0 C). Electrochemical processes and overall efficiency are significantly affected by temperature and pressure, influencing capacity and charge–discharge rates. In previous studies, temperature and pressure were not controlled simultaneously due to technological limitations. A novel test bench was developed to investigate these influences by controlling the surface temperature and mechanical pressure on a pouch LIB during electrical charging and discharging. This test rig permits an accurate assessment of mechanical, thermal and electrical parameters, while decoupling thermal and mechanical influences during electrical operation. The results of the study confirm what has been found in the literature: an increase in pressure leads to a decrease in performance, while an increase in temperature leads to an increase in performance. However, the extent to which the pressure impacts performance is determined by the temperature and the applied electrical discharge rate. At 5 °C and 0.5 C, an increase in pressure from 0.2 MPa to 1.2 MPa results in a 5.84% decrease in discharged capacity. At 45 °C the discharge capacity decreases by 2.17%. Regarding the impact of the temperature, at discharge rate of 0.5 C, with an applied pressure of 0.2 MPa, an increase in temperature from 25 °C to 45 °C results in an increase of 4.27% in discharged capacity. The impact on performance varies significantly at different C-rates. Under the same pressure (0.2 MPa) and temperature variation (from 25 °C to 45 °C), increasing the electrical discharge rate to 1.5 C results in a 43.04% increase in discharged capacity. The interplay between temperature, pressure and C-rate has a significant, non-linear impact on performance. This suggests that the characterisation of an LIB would require the active control of both temperature and pressure during electrical operation.

Funder

Austria Wirtschaftsservice Preseed Deep Tech program

ZwickRoell Testing Systems GmbH

Publisher

MDPI AG

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3