Facile Synthesis of Nickel Phosphide @ N-Doped Carbon Nanorods with Exceptional Cycling Stability as Li-Ion and Na-Ion Battery Anode Material

Author:

Fu Fang1,He Qiuchen1,Zhang Xuan2,Key Julian1,Shen Peikang1,Zhu Jinliang1

Affiliation:

1. Collaborative Innovation Center of Sustainable Energy Materials, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning 530004, China

2. Gansu Yinguang Chemical Industry Ltd., Baiyin 730900, China

Abstract

Nickel phosphide (Ni2P), as an anode material for both lithium- and sodium-ion batteries, offers high theoretical specific and volumetric capacities. However, considerable challenges include its limited rate capability and low cycle stability arising from its volume change and degradation during cycling. To solve these issues, appropriate composite micro/nanoparticle designs can improve conductivity and provide confinement. Herein, we report a simple pyrolysis method to synthesize nitrogen-doped carbon-coated Ni2P nanorod arrays (Ni2P@NC) from nickel foam and an ionic resin as a source of carbon, nitrogen and phosphorus. The N-doped open-ended carbon shells provide Ni2P containment, good electrical conductivity, efficient electrolyte access and the buffering of bulk strain during cycling. Consequently, as a LIB anode material, Ni2P@NC has impressive specific capacity in long-term cycling (630 mAh g−1 for 150 cycles at 0.1 A g−1) and a high rate capability of 170 mAh g−1 for 6000 cycles at 5 A g−1. Similarly, as a SIB anode, Ni2P@NC retains a sizable 288 mAh g−1 over 300 cycles at 0.1 A g−1, and 150 mAh g−1 over 2000 cycles at 2 A g−1. Furthermore, due to a sizable portion of its capacity coinciding with adequately low voltage, the material shows promise for high volumetric energy storage in full-cell format. Lastly, the simple synthesis method has the potential to produce other carbon-coated metal phosphides for electrochemical applications.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangxi

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3