Affiliation:
1. State Key Laboratory of Heavy Oil Processing, Advanced Chemical Engineering and Energy Materials Research Center, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China
Abstract
Coal tar pitch (CTP) is a high-quality raw material for producing functional carbon materials owing to its high carbon yield and high degree of condensation. The rational structure regulation of CTP-derived carbon materials is paramount for their special application. Herein, a green template strategy is proposed to fabricate hierarchically porous carbon (HPC) and employ it as the anode material for lithium-ion batteries. It can be demonstrated that the mass ratio of the template (KHCO3) and carbon source (CTP) significantly influences the microstructure and electrochemical performances of HPC. HPC-3 synthesized by a mass ratio of 3:1 shows a coral-like lamellar nanostructure with high specific surface area, developed nanopores, and ample defects, enabling fast and high-flux lithium storage. Thus, the HPC-3 electrode achieves an excellent rate capacity of 219 mAh g−1 at 10 A g−1 and maintains a high discharge capacity of 660 mAh g−1 after 1400 cycles at 1 A g−1. This work takes a step towards the high-value-added and green utilization of CTP and offers a promising solution for the sustainable production of advanced carbon electrode materials.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献