State of Health Estimation of Lithium-Ion Batteries Using a Multi-Feature-Extraction Strategy and PSO-NARXNN

Author:

Ren Zhong,Du ChangqingORCID,Ren Weiqun

Abstract

The lithium-ion battery state of health (SOH) estimation is critical for maintaining reliable and safe working conditions for electric vehicles (EVs). However, accurate and robust SOH estimation remains a significant challenge. This paper proposes a multi-feature extraction strategy and particle swarm optimization-nonlinear autoregressive with exogenous input neural network (PSO-NARXNN) for accurate and robust SOH estimation. First, eight health features (HFs) are extracted from partial voltage, capacity, differential temperature (DT), and incremental capacity (IC) curves. Then, qualitative and quantitative analyses are used to evaluate the selected HFs. Second, the PSO algorithm is adopted to optimize the hyperparameters of NARXNN, including input delays, feedback delays, and the number of hidden neurons. Third, to verify the effectiveness of the multi-feature extraction strategy, the SOH estimators based on a single feature and fusion feature are comprehensively compared. To verify the effectiveness of the proposed PSO-NARXNN, a simple three-layer backpropagation neural network (BPNN) and a conventional NARXNN are built for comparison based on the Oxford aging dataset. The experimental results demonstrate that the proposed method has higher accuracy and stronger robustness for SOH estimation, where the average mean absolute error (MAE) and root mean square error (RMSE) are 0.47% and 0.56%, respectively.

Funder

Key R&D project of Hubei Province China

Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3