Online Fast Charging Model without Lithium Plating for Long-Dimensional Cells in Automotive Applications

Author:

Wang Yu1ORCID,Mao Shuoyuan2,Chen Quanwei1,Chen Fei1,Zhang Xue1,Ouyang Minggao2,Han Xuebing2,Zheng Yuejiu1

Affiliation:

1. School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

2. School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China

Abstract

The internal negative electrode potential in lithium-ion batteries (LIBs) is intricately linked to the lithium-ion intercalation and plating reactions occurring within the cell. With the expansion of cell sizes, the internal negative electrode potential distribution gradually becomes inconsistent. However, the existing negative electrode potential estimation models and fast charging strategies have not yet considered the impact of consistency, and the model estimation accuracy will be greatly influenced by different temperatures and charging rates. This study proposes an online lithium-free fast charging equivalent circuit model (OLFEM) for estimating the negative electrode potential terminal voltage and developing fast charging strategies of long-dimensional LIBs in real vehicles. This study employs distributed reference electrodes integrated into long-dimensional LIBs and compares the negative electrode potential measured in the vicinity of both the negative and positive tabs. Subsequently, based on the lowest negative electrode potential point, model parameters were obtained at different temperatures and charging rates. This model is further verified under different operating conditions. Finally, a fast-charging strategy without lithium plating is developed in real-time based on the negative electrode potential estimated by the model. The results demonstrate that long-dimensional cells exhibit a lower negative electrode potential on the positive tab side. Across various temperatures and charging rates, the calibrated model achieves a negative electrode potential estimated error within 25 mV, and the estimation error for terminal voltage is within 5 mV. The proposed fast-charging method prevents lithium plating and charges the cell up to 96.8% within an hour. After 100 cycles, the cell experiences a capacity degradation of less than 2%, and the disassembly results indicate that no lithium precipitation has occurred. The methods outlined in this study provide valuable insights for online fast charging of large-dimensional batteries without lithium plating.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3