Organic Rankine Cycle as the Waste Heat Recovery Unit of Solid Oxide Fuel Cell: A Novel System Design for the Electric Vehicle Charging Stations Using Batteries as a Backup/Storage Unit

Author:

Pourrahmani HosseinORCID,Xu Chengzhang,Van herle Jan

Abstract

The novelty of this study is to suggest a novel design for electric vehicle charging stations using fuel cell technology. The proposed system benefits from the Organic Rankine Cycle (ORC) to utilize the exhaust energy of the Solid Oxide Fuel Cell (SOFC) stacks in addition to the Lithium-Ion battery to improve the efficiency by partial-load operation of the stacks at night. The study is supported by the thermodynamic analysis to obtain the characteristics of the system in each state point. To analyze the operation of the system during the partial-load operation, the dynamic performance of the system was developed during the day. Furthermore, the environmental impacts of the system were evaluated considering eighteen parameters using a life-cycle assessment (LCA). LCA results also revealed the effects of different fuels and working fluids for the SOFC stacks and ORC, respectively. Results show that the combination of SOFC and ORC units can generate 264.02 kWh with the respective overall energy and exergy efficiencies of 48.96% and 48.51%. The suggested 264.02 kWh contributes to global warming (kg CO2 eq) by 5.17 × 105, 8.36 × 104, 2.5 × 105, 1.98 × 105, and 6.79 × 104 using methane, bio-methanol, natural gas, biogas, and hydrogen as the fuel of the SOFC stacks.

Funder

European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3