Estimation of Lithium-ion Battery Discharge Capacity by Integrating Optimized Explainable-AI and Stacked LSTM Model

Author:

Vakharia Vinay1ORCID,Shah Milind1ORCID,Nair Pranav1,Borade Himanshu2,Sahlot Pankaj3,Wankhede Vishal1ORCID

Affiliation:

1. Department of Mechanical Engineering, School of Technology, PDEU Gandhinagar, Gandhinagar 382426, Gujarat, India

2. Mechanical Engineering Department, Medi-Caps University, Indore 453331, Madhya Pradesh, India

3. Mechanical Engineering Department, National Institute of Technology, Kurukshetra 136119, Haryana, India

Abstract

Accurate lithium-ion battery state of health evaluation is crucial for correctly operating and managing battery-based energy storage systems. Experimental determination is problematic in these applications since standard functioning is necessary. Machine learning techniques enable accurate and effective data-driven predictions in such situations. In the present paper, an optimized explainable artificial intelligence (Ex-AI) model is proposed to predict the discharge capacity of the battery. In the initial stage, three deep learning (DL) models, stacked long short-term memory networks (stacked LSTMs), gated recurrent unit (GRU) networks, and stacked recurrent neural networks (SRNNs) were developed based on the training of six input features. Ex-AI was applied to identify the relevant features and further optimize Ex-AI operating parameters, and the jellyfish metaheuristic optimization technique was considered. The results reveal that discharge capacity was better predicted when the jellyfish-Ex-AI model was applied. A very low RMSE of 0.04, MAE of 0.60, and MAPE of 0.03 were observed with the Stacked-LSTM model, demonstrating our proposed methodology’s utility.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3