Taylor‐based smart flower optimization algorithm with the deep residual network to predict mechanical materials properties

Author:

Sharma Oshin1ORCID,Sharma Deepak2

Affiliation:

1. Department of CSE SRM Institute of Science & Technology Delhi‐NCR Campus Ghaziabad India

2. School of Engineering JNU New Delhi India

Abstract

AbstractThe expedience of materials processing is of great significance and increased the industrial interest in meeting the needs of contemporary engineering applications. The inspection of mechanical properties is extensively explored by scientists, but the prediction of properties with the deep model is limited. This article presents an optimized deep residual network (DRN) to predict mechanical properties of materials. The quantile normalization is applied for improved processing. The DRN is pre‐trained with an optimization model for initializing the best set of attributes and tuning the parameters of the model. Here, Taylor‐Smart Flower Optimization Algorithm (Taylor‐SFOA) is adapted for training DRN by tuning optimum weights. The proposed Taylor‐SFOA helps to effectively offer precise mapping amidst mechanical properties and processing parameters. The optimal features are selected with the Ruzicka and Motyka. The selected features are fused with a dice coefficient to choose distinct features for attaining effective performance. The method yielded better outcomes with improved generalization. The Taylor‐SFOA‐based DRN provided better outcomes with smallest Mean absolute error (MAE) of 0.049, Mean square error (MSE) of 0.116, Root Mean square error (RMSE) of 0.340, memory footprint of 37.700 MB, and training time of 9.633 Sec.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3