Dynamic Battery Modeling for Electric Vehicle Applications

Author:

Rotas Renos12ORCID,Iliadis Petros13ORCID,Nikolopoulos Nikos1ORCID,Rakopoulos Dimitrios1ORCID,Tomboulides Ananias2

Affiliation:

1. Chemical Process and Energy Resources Institute, Centre for Research and Technology Hellas, Egialeias 52, 11525 Maroussi, Greece

2. Laboratory of Applied Thermodynamics, Department of Mechanical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece

3. Department of Electrical and Computer Engineering, Democritus University of Thrace, 67100 Xanthi, Greece

Abstract

The development of accurate dynamic battery pack models for electric vehicles (EVs) is critical for the ongoing electrification of the global automotive vehicle fleet, as the battery is a key element in the energy performance of an EV powertrain system. The equivalent circuit model (ECM) technique at the cell level is commonly employed for this purpose, offering a balance of accuracy and efficiency in representing battery operation within the broader powertrain system. In this study, a second-order ECM model of a battery cell has been developed to ensure high accuracy and performance. Modelica, an acausal and object-oriented equation-based modeling language, has been used for its advantageous features, including the development of extendable, modifiable, modular, and reusable models. Parameter lookup tables at multiple levels of state of charge (SoC), extracted from lithium-ion (Li-ion) battery cells with four different commonly used cathode materials, have been utilized. This approach allows for the representation of the battery systems that are used in a wide range of commercial EV applications. To verify the model, an integrated EV model is developed, and the simulation results of the US Environmental Protection Agency Federal Test Procedure (FTP-75) driving cycle have been compared with an equivalent application in MATLAB Simulink. The findings demonstrate a close match between the results obtained from both models across different system points. Specifically, the maximum vehicle velocity deviation during the cycle reaches 1.22 km/h, 8.2% lower than the corresponding value of the reference application. The maximum deviation of SoC is limited to 0.06%, and the maximum value of relative voltage deviation is 1.49%. The verified model enables the exploration of multiple potential architecture configurations for EV powertrains using Modelica.

Funder

SCALE-Smart Charging Alignment for Europe

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3