A Review on Battery Modelling Techniques

Author:

Tamilselvi S.,Gunasundari S.,Karuppiah N.,Razak RK AbdulORCID,Madhusudan S.ORCID,Nagarajan Vikas MadhavORCID,Sathish T.,Shamim Mohammed Zubair M.ORCID,Saleel C. AhamedORCID,Afzal AsifORCID

Abstract

The growing demand for electrical energy and the impact of global warming leads to a paradigm shift in the power sector. This has led to the increased usage of renewable energy sources. Due to the intermittent nature of the renewable sources of energy, devices capable of storing electrical energy are required to increase its reliability. The most common means of storing electrical energy is battery systems. Battery usage is increasing in the modern days, since all mobile systems such as electric vehicles, smart phones, laptops, etc., rely on the energy stored within the device to operate. The increased penetration rate of the battery system requires accurate modelling of charging profiles to optimise performance. This paper presents an extensive study of various battery models such as electrochemical models, mathematical models, circuit-oriented models and combined models for different types of batteries. It also discusses the advantages and drawbacks of these types of modelling. With AI emerging and accelerating all over the world, there is a scope for researchers to explore its application in multiple fields. Hence, this work discusses the application of several machine learning and meta heuristic algorithms for battery management systems. This work details the charging and discharging characteristics using the black box and grey box techniques for modelling the lithium-ion battery. The approaches, advantages and disadvantages of black box and grey box type battery modelling are analysed. In addition, analysis has been carried out for extracting parameters of a lithium-ion battery model using evolutionary algorithms.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 133 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3