Carbon-Coated Si Nanoparticles Anchored on Three-Dimensional Carbon Nanotube Matrix for High-Energy Stable Lithium-Ion Batteries

Author:

Fang Hua123ORCID,Liu Qingsong1,Feng Xiaohua1,Yan Ji123ORCID,Wang Lixia123ORCID,He Linghao1,Zhang Linsen123,Wang Guoqing1

Affiliation:

1. College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China

2. Ceramic Materials Research Center, Zhengzhou University of Light Industry, Zhengzhou 450001, China

3. Zhengzhou Key Laboratory of Green Batteries, Zhengzhou 450001, China

Abstract

An easy and scalable synthetic route was proposed for synthesis of a high-energy stable anode material composed of carbon-coated Si nanoparticles (NPs, 80 nm) confined in a three-dimensional (3D) network-structured conductive carbon nanotube (CNT) matrix (Si/CNT@C). The Si/CNT@C composite was fabricated via in situ polymerization of resorcinol formaldehyde (RF) resin in the co-existence of Si NPs and CNTs, followed by carbonization at 700 °C. The RF resin-derived carbon shell (~10 nm) was wrapped on the Si NPs and CNTs surface, welding the Si NPs to the sidewall of the interconnected CNTs matrix to avoid Si NP agglomeration. The unique 3D architecture provides a highway for Li+ ion diffusion and electron transportation to allow the fast lithiation/delithiation of the Si NPs; buffers the volume fluctuation of Si NPs; and stabilizes solid–electrolyte interphase film. As expected, the obtained Si/CNT@C hybrid exhibited excellent lithium storage performances. An initial discharge capacity of 1925 mAh g−1 was achieved at 0.1 A g−1 and retained as 1106 mAh g−1 after 200 cycles at 0.1 A g−1. The reversible capacity was retained at 827 mAh g−1 when the current density was increased to 1 A g−1. The Si/CNT@C possessed a high Si content of 62.8 wt%, facilitating its commercial application. Accordingly, this work provides a promising exploration of Si-based anode materials for high-energy stable lithium-ion batteries.

Funder

Key Scientific Research Project in Colleges and Universities of Henan Province of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

Reference80 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3