Hybrid Ionically Covalently Cross-Linked Network Binder for High-Performance Silicon Anodes in Lithium-Ion Batteries

Author:

Zeng Xuejian12,Yue Hongyan1,Wu Jina2,Chen Chao234,Liu Lichun25

Affiliation:

1. School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, China

2. Nanotechnology Research Institute, Jiaxing University, Jiaxing 314001, China

3. Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing 314001, China

4. Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China

5. College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China

Abstract

Silicon has gained considerable attention as an anode material in lithium-ion batteries due to its high theoretical capacity. However, the significant volume changes that occur during lithiation/delithiation processes often result in poor cycling stability of silicon anodes. In this study, a hybrid ionically covalently cross-linked network binder carboxymethylcellulose-hyperbranched polyethyleneimine (CMC-HBPEI) is successfully constructed by “switching” ionic bonds and partially “converting” them to covalent bonds to buffer the volume variation of silicon anodes. In this hybrid cross-linked network, the covalently cross-linked network is responsible for maintaining the structural integrity of the anode, while the ionically cross-linked network utilizes the bonding reversibility to sustainably dissipative the mechanical stress and self-heal the structural breakages generated from the lithiation expansion of silicon. By changing the drying temperature of the anode, the ratio of covalent and ionic bonds in the hybrid cross-linked network can be adjusted to balance the mechanical stability and bonding reversibility of the CMC-HBPEI binder. Even after 300 cycles of charging/discharging under a current density of 500 mAg−1, the specific capacity of the optimized Si/CMC-HBPEI anode remains at 1545 mAhg−1.

Funder

National Natural Science Foundation of China

Key Laboratory of Yarn Materials Forming and Composite Processing Technology, Zhejiang Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3