High-Precision and Robust SOC Estimation of LiFePO4 Blade Batteries Based on the BPNN-EKF Algorithm

Author:

Zhang Zhihang1ORCID,Chen Siliang2,Lu Languang1,Han Xuebing1,Li Yalun1,Chen Siqi1,Wang Hewu1ORCID,Lian Yubo12,Ouyang Minggao1

Affiliation:

1. State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing 100084, China

2. BYD Auto Industry Company Limited, Shenzhen 518116, China

Abstract

The lithium iron phosphate (LiFePO4) blade battery is a long, rectangular-shaped cell that can be directly integrated into battery pack systems. It enhances volumetric power density, significantly reduces costs, and is widely utilized in electric vehicles. However, the flat open circuit voltage and significant polarization differences under wide operational temperatures are challenging for accurate voltage modeling of battery management systems (BMSs). In particular, inaccurate state of charge (SOC) estimation may cause overcharging and over-discharging risks. To accurately perceive the SOC of LiFePO4 blade batteries, a SOC estimation method based on the backpropagation neural network-extended Kalman filter (BPNN-EKF) algorithm is proposed. BPNN is a neural network model that utilizes the backpropagation algorithm to update model parameters, while EKF is an optimal estimation algorithm. Firstly, dynamic working condition tests, including the New European Driving Cycle (NEDC) and high-speed working (HSW) condition tests, are conducted under a wide temperature range (−25–43 °C). HSW conditions refer to a simulated operating condition that mimics the driving of an electric vehicle on a highway. The minimum voltage of the battery system is used as the output for training the BPNN model. We derive the Kalman gain by combining the BPNN output voltage. Additionally, the EKF algorithm is employed to correct the SOC value using voltage error information. Concerning long SOC calculation intervals, capacity errors, initial SOC errors, and current and voltage sampling errors, the maximum SOC estimation RMSE is 3.98% at −20 °C NEDC, 3.62% at 10 °C NEDC, and 1.68% at 35 °C HSW. The proposed algorithm can be applied to different temperatures and operations, demonstrating high robustness. This BPNN-EKF algorithm has the potential to be embedded in electric vehicle BMS systems for practical applications.

Funder

Ministry of Science and Technology of China

National Natural Science Foundation of China

China National Postdoctoral Program for Innovative Talents

China Postdoctoral Science Foundation

Beijing Natural Science Foundation

Shuimu Tsinghua Scholar Program

International Joint Mission on Climate Change and Carbon Neutrality

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3