Economic and Environmental Viability of Lithium-Ion Battery Recycling—Case Study in Two Canadian Regions with Different Energy Mixes

Author:

Gonzales-Calienes Giovanna1ORCID,Kannangara Miyuru1,Bensebaa Farid1

Affiliation:

1. Energy, Mining and Environment Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada

Abstract

Lithium-ion battery (LIB) pack is the core component of electric vehicles (EVs). As the demand is continuously increasing, it puts a lot of strain on the battery raw material supply chains. Likewise, the large quantity of spent LIBs from different sources will add to the complexity of end-of-life (EoL) management. Battery recycling processing is a potential source of critical cathode precursor materials as an alternative to virgin raw material sourcing. Indeed, metal sulfates (nickel, cobalt, and manganese) and lithium carbonate could be recovered through EoL processing. This study aims to provide an economic and environmental life cycle sustainability assessment of recycled battery materials. This assessment is based on a bottom-up approach considering geographical boundaries and process data inputs. The two sources of critical cathode battery materials, virgin and recycled battery materials, are compared based on economic and environmental indicators. This study identified the province of Quebec in Canada as the geographical boundary where several battery processing plants have been recently announced. The best available recycling process (hydrometallurgy) was selected. For the virgin materials, this study considers the option of importing from other jurisdictions by using global average supply chain values. Furthermore, a comparison of alternative supply chain configurations was performed using a spatially differentiated approach. The main findings of this study are as follows: (i) the environmental credit of recycled cathode active materials (CAMs) is estimated as −6.46 kg CO2e/kg CAM, and (ii) the overall cost and environmental impacts of producing LIB cathode active material from recycled battery materials can be 48% and 54% lower than production from virgin materials, respectively, considering the upstream, midstream, and downstream stages of the CAM supply chain. The main drivers for the reduction in these financial costs and emissions are the local transportation and the hydrometallurgical process. The assessment results provide insights to support the development of appropriate policies and R&D solutions adapted to local considerations as well as offer additional possibilities to improve the design of sustainable supply chains for LIB recycling.

Funder

Office of Energy Research and Development (OERD) of the Natural Resources Canada

Advanced Clean Energy (ACE) program of the National Research Council of Canada

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3