Abstract
This paper presents a hybrid equalization (EQ) topology of lithium-ion batteries (LIB). Currently, LIBs are widely used for electric mobility due to their characteristics of high energy density and multiple recharge cycles. In an electric vehicle (EV), these batteries are connected in series and/or parallel until the engine reaches the voltage and energy capacity required. For LIBs to operate safely, a battery management system (BMS) is required. This system monitors and controls voltage, current, and temperature parameters. Among the various functions of a BMS, voltage equalization is of paramount importance for the safety and useful life of LIBs. There are two main voltage equalization techniques: passive and active. Passive equalization dissipates energy, and active equalization transfers energy between the LIBs. The passive has the advantage of being simple to implement; however, it has a longer equalization time and energy loss. Active is complex to implement but has fast equalization time and lower energy loss. This paper proposes the combination of these two techniques to implement simultaneously to control a pack of LIBs, equalizing voltage between stacks and at the cell level. For this purpose, a pack of LIBs was simulated with sixty-four cells connected in series and divided into eight stacks with eight battery cells each. The rated voltage of each cell is 3.7 V, with a capacity of 106 Ah. The total pack has a voltage of 236.8 V and 25 kW. Some LIBs were fitted with different SOC values to simulate an imbalance between cells. In the simulations, different topologies were evaluated: passive and active topology at the cell level and combined active and passive equalization at the pack level. Results are compared as a response time and state of charge (SOC) level. In addition, equalization topologies are applied in an EV model with the FTP75 conduction cycle. In this way, it is possible to evaluate the autonomy of each equalization technique simulated in this work. The hybrid topology active at the stack level and passive at the module level showed promising results in equalization time and autonomy compared with a purely active or passive equalization technique. This combination is a solution to achieve low EQ time and satisfactory SOC when compared to a strictly active or passive EQ.
Subject
Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献