Hybrid Equalization Topology for Battery Management Systems Applied to an Electric Vehicle Model

Author:

Galvão José RodolfoORCID,Calligaris Lucas BraggiãoORCID,de Souza Kawe MonteiroORCID,Gotz Joelton DeoneiORCID,Junior Paulo BronieraORCID,Corrêa Fernanda CristinaORCID

Abstract

This paper presents a hybrid equalization (EQ) topology of lithium-ion batteries (LIB). Currently, LIBs are widely used for electric mobility due to their characteristics of high energy density and multiple recharge cycles. In an electric vehicle (EV), these batteries are connected in series and/or parallel until the engine reaches the voltage and energy capacity required. For LIBs to operate safely, a battery management system (BMS) is required. This system monitors and controls voltage, current, and temperature parameters. Among the various functions of a BMS, voltage equalization is of paramount importance for the safety and useful life of LIBs. There are two main voltage equalization techniques: passive and active. Passive equalization dissipates energy, and active equalization transfers energy between the LIBs. The passive has the advantage of being simple to implement; however, it has a longer equalization time and energy loss. Active is complex to implement but has fast equalization time and lower energy loss. This paper proposes the combination of these two techniques to implement simultaneously to control a pack of LIBs, equalizing voltage between stacks and at the cell level. For this purpose, a pack of LIBs was simulated with sixty-four cells connected in series and divided into eight stacks with eight battery cells each. The rated voltage of each cell is 3.7 V, with a capacity of 106 Ah. The total pack has a voltage of 236.8 V and 25 kW. Some LIBs were fitted with different SOC values to simulate an imbalance between cells. In the simulations, different topologies were evaluated: passive and active topology at the cell level and combined active and passive equalization at the pack level. Results are compared as a response time and state of charge (SOC) level. In addition, equalization topologies are applied in an EV model with the FTP75 conduction cycle. In this way, it is possible to evaluate the autonomy of each equalization technique simulated in this work. The hybrid topology active at the stack level and passive at the module level showed promising results in equalization time and autonomy compared with a purely active or passive equalization technique. This combination is a solution to achieve low EQ time and satisfactory SOC when compared to a strictly active or passive EQ.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Battery voltage acquisition system based on programmable switch array;2024 4th International Conference on Electronics, Circuits and Information Engineering (ECIE);2024-05-24

2. Design and Development of a Low-Cost Battery System for Electric Motorcycles;2023 24th International Middle East Power System Conference (MEPCON);2023-12-19

3. Intelligent Management for Second-Life Lithium-Ion Batteries with Backup Cells;Flexible Automation and Intelligent Manufacturing: Establishing Bridges for More Sustainable Manufacturing Systems;2023-08-25

4. Studying Abuse Testing on Lithium-Ion Battery Packaging for Energy Storage Systems;Sustainability;2023-07-26

5. A High-Efficiency Capacitor-Based Battery Equalizer for Electric Vehicles;Sensors;2023-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3