State-of-Health Estimation of Lithium-Ion Battery Based on Constant Voltage Charging Duration

Author:

Chen Jinyu1,Chen Dawei1,Han Xiaolan2,Li Zhicheng1,Zhang Weijun1,Lai Chun Sing23ORCID

Affiliation:

1. State Grid Fujian Electric Power Research Institute, Fuzhou 350007, China

2. School of Automation, Guangdong University of Technology, Guangzhou 510006, China

3. Brunel Interdisciplinary Power Systems Research Centre, Department of Electronic and Electrical Engineering, Brunel University London, London UB8 3PH, UK

Abstract

It is imperative to determine the State of Health (SOH) of lithium-ion batteries precisely to guarantee the secure functioning of energy storage systems including those in electric vehicles. Nevertheless, predicting the SOH of lithium-ion batteries by analyzing full charge–discharge patterns in everyday situations can be a daunting task. Moreover, to conduct this by analyzing relaxation phase traits necessitates a more extended idle waiting period. In order to confront these challenges, this study offers a SOH prediction method based on the features observed during the constant voltage charging stage, delving into the rich information about battery health contained in the duration of constant voltage charging. Innovatively, this study suggests using statistics of the time of constant voltage (CV) charging as health features for the SOH estimation model. Specifically, new features, including the duration of constant voltage charging, the Shannon entropy of the time of the CV charging sequence, and the Shannon entropy of the duration increment sequence, are extracted from the CV charging phase data. A battery’s State-of-Health estimation is then performed via an elastic net regression model. The experimentally derived results validate the efficacy of the approach as it attains an average mean absolute error (MAE) of only 0.64%, a maximum root mean square error (RMSE) of 0.81%, and an average coefficient of determination (R2) of 0.98. The above statement serves as proof that the suggested technique presents a substantial level of precision and feasibility for the estimation of SOH.

Funder

Guided (Key) Projects for Industry in Fujian Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3