A Review of Heavy-Duty Vehicle Powertrain Technologies: Diesel Engine Vehicles, Battery Electric Vehicles, and Hydrogen Fuel Cell Electric Vehicles

Author:

Cunanan Carlo,Tran Manh-KienORCID,Lee Youngwoo,Kwok Shinghei,Leung Vincent,Fowler MichaelORCID

Abstract

Greenhouse gas emissions from the freight transportation sector are a significant contributor to climate change, pollution, and negative health impacts because of the common use of heavy-duty diesel vehicles (HDVs). Governments around the world are working to transition away from diesel HDVs and to electric HDVs, to reduce emissions. Battery electric HDVs and hydrogen fuel cell HDVs are two available alternatives to diesel engines. Each diesel engine HDV, battery-electric HDV, and hydrogen fuel cell HDV powertrain has its own advantages and disadvantages. This work provides a comprehensive review to examine the working mechanism, performance metrics, and recent developments of the aforementioned HDV powertrain technologies. A detailed comparison between the three powertrain technologies, highlighting the advantages and disadvantages of each, is also presented, along with future perspectives of the HDV sector. Overall, diesel engine in HDVs will remain an important technology in the short-term future due to the existing infrastructure and lower costs, despite their high emissions, while battery-electric HDV technology and hydrogen fuel cell HDV technology will be slowly developed to eliminate their barriers, including costs, infrastructure, and performance limitations, to penetrate the HDV market.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference101 articles.

1. Overview of the Heavy-Duty Vehicle Market and CO2 Emissions in the European Union;Muncrief,2015

2. A Review of Methane Gas Detection Sensors: Recent Developments and Future Perspectives

3. Review of Current Practices and New Developments in Heavy-Duty Vehicle Inspection and Maintenance Programs;Posada,2015

4. Environmental and Economic Benefits of a Battery Electric Vehicle Powertrain with a Zinc–Air Range Extender in the Transition to Electric Vehicles

Cited by 163 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3