Molybdenum Nitride and Oxide Quantum Dot @ Nitrogen-Doped Graphene Nanocomposite Material for Rechargeable Lithium Ion Batteries

Author:

Wang LixiaORCID,Zhao Taibao,Chen Ruiping,Fang HuaORCID,Yang Yihao,Cao Yang,Zhang Linsen

Abstract

A multistage architecture with molybdenum nitride and oxide quantum dots (MON-QDs) uniformly grown on nitrogen-doped graphene (MON-QD/NG) is prepared by a facile and green hydrothermal route followed by a one-step calcination process for lithium ion batteries (LIBs). Characterization tests show that the MON-QDs with diameters of 1–3 nm are homogeneously anchored on or intercalated between graphene sheets. The molybdenum nitride exists in the form of crystalline Mo2N (face-centered cubic), while molybdenum oxide exists in the form of amorphous MoO2 in the obtained composite. Electrochemical tests show that the MON-QD/NG calcinated at 600 °C has an excellent lithium storage performance with an initial discharge capacity of about 1753.3 mAh g−1 and a stable reversible capacity of 958.9 mAh g−1 at current density of 0.1 A g−1 as well as long-term cycling stability at high current density of 5 A g−1. This is due to the multistage architecture, which can provide plenty of active sites, buffer volume changes of electrode and enhance electrical conductivity as well as the synergistic effect between Mo2N and MoO2.

Funder

Henan Energy & Chemical Industry Group

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Electrochemistry,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3