Abstract
Inverse kinematics problems (IKP) are ubiquitous in robotics for improved robot control in widespread applications. However, the high non-linearity, complexity, and equation coupling of a general six-axis robotic manipulator pose substantial challenges in solving the IKP precisely and efficiently. To address this issue, we propose a novel approach based on neural network (NN) with numerical error minimization in this paper. Within our framework, the complexity of IKP is first simplified by a strategy called joint space segmentation, with respective training data generated by forward kinematics. Afterwards, a set of multilayer perception networks (MLP) are established to learn from the foregoing data in order to fit the goal function piecewise. To reduce the computational cost of the inference process, a set of classification models is trained to determine the appropriate forgoing MLPs for predictions given a specific input. After the initial solution is sought, being improved with a prediction error minimized, the refined solution is finally achieved. The proposed methodology is validated via simulations on Xarm6—a general 6 degrees of freedom manipulator. Results further verify the feasibility of NN for IKP in general cases, even with a high-precision requirement. The proposed algorithm has showcased enhanced efficiency and accuracy compared to NN-based approaches reported in the literature.
Funder
Natural Sciences and Engineering Research Council of Canada
VP Startup Fund from Memorial University
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference39 articles.
1. Koceska, N., Koceski, S., Beomonte Zobel, P., Trajkovik, V., and Garcia, N. (2019). A telemedicine robot system for assisted and independent living. Sensors, 19.
2. Modified primal-dual neural networks for motion control of redundant manipulators with dynamic rejection of harmonic noises;IEEE Trans. Neural Netw. Learn. Syst.,2017
3. Combating COVID-19—The role of robotics in managing public health and infectious diseases;Sci. Robot.,2020
4. Craig, J.J. (2005). Introduction to Robotics: Mechanics and Control, Pearson Education International. [3rd ed.].
5. Solving the kinematics of the most general six-and five-degree-of-freedom manipulators by continuation methods;J. Mech. Transm. Autom. Des.,1985
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献